Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vox Sang ; 119(4): 377-382, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38226545

RESUMO

BACKGROUND AND OBJECTIVES: Mixed-field agglutination in ABO phenotyping (A3, B3) has been linked to genetically different blood cell populations such as in chimerism, or to rare variants in either ABO exon 7 or regulatory regions. Clarification of such cases is challenging and would greatly benefit from sequencing technologies that allow resolving full-gene haplotypes at high resolution. MATERIALS AND METHODS: We used long-read sequencing by Oxford Nanopore Technologies to sequence the entire ABO gene, amplified in two overlapping long-range PCR fragments, in a blood donor presented with A3B phenotype. Confirmation analyses were carried out by Sanger sequencing and included samples from other family members. RESULTS: Our data revealed a novel heterozygous g.10924C>A variant on the ABO*A allele located in the transcription factor binding site for RUNX1 in intron 1 (+5.8 kb site). Inheritance was shown by the results of the donor's mother, who shared the novel variant and the anti-A specific mixed-field agglutination. CONCLUSION: We discovered a regulatory variant in the 8-bp RUNX1 motif of ABO, which extends current knowledge of three other variants affecting the same motif and also leading to A3 or B3 phenotypes. Overall, long-range PCR combined with nanopore sequencing proved powerful and showed great potential as an emerging strategy for resolving cases with cryptic ABO phenotypes.


Assuntos
Sistema ABO de Grupos Sanguíneos , Subunidade alfa 2 de Fator de Ligação ao Core , Humanos , Íntrons/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Fenótipo , Alelos , Sítios de Ligação , Sistema ABO de Grupos Sanguíneos/genética , Genótipo
2.
Biomedicines ; 12(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275395

RESUMO

Due to substantial improvements in read accuracy, third-generation long-read sequencing holds great potential in blood group diagnostics, particularly in cases where traditional genotyping or sequencing techniques, primarily targeting exons, fail to explain serological phenotypes. In this study, we employed Oxford Nanopore sequencing to resolve all genotype-phenotype discrepancies in the Kidd blood group system (JK, encoded by SLC14A1) observed over seven years of routine high-throughput donor genotyping using a mass spectrometry-based platform at the Blood Transfusion Service, Zurich. Discrepant results from standard serological typing and donor genotyping were confirmed using commercial PCR-SSP kits. To resolve discrepancies, we amplified the entire coding region of SLC14A1 (~24 kb, exons 3 to 10) in two overlapping long-range PCRs in all samples. Amplicons were barcoded and sequenced on a MinION flow cell. Sanger sequencing and bridge-PCRs were used to confirm findings. Among 11,972 donors with both serological and genotype data available for the Kidd system, we identified 10 cases with unexplained conflicting results. Five were linked to known weak and null alleles caused by variants not included in the routine donor genotyping. In two cases, we identified novel null alleles on the JK*01 (Gly40Asp; c.119G>A) and JK*02 (Gly242Glu; c.725G>A) haplotypes, respectively. Remarkably, the remaining three cases were associated with a yet unknown deletion of ~5 kb spanning exons 9-10 of the JK*01 allele, which other molecular methods had failed to detect. Overall, nanopore sequencing demonstrated reliable and accurate performance for detecting both single-nucleotide and structural variants. It possesses the potential to become a robust tool in the molecular diagnostic portfolio, particularly for addressing challenging structural variants such as hybrid genes, deletions and duplications.

3.
Life (Basel) ; 13(9)2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37763293

RESUMO

Acute porphyrias are a group of monogenetic inborn errors of heme biosynthesis, characterized by acute and potentially life-threatening neurovisceral attacks upon exposure to certain triggering factors. Biochemical analyses can determine the type of acute porphyria, and subsequent genetic analysis allows for the identification of pathogenic variants in the specific gene, which provides information for family counselling. In 2017, a male Swiss patient was diagnosed with an acute porphyria while suffering from an acute attack. The pattern of porphyrin metabolite excretion in urine, faeces, and plasma was typical for an acute intermittent porphyria (AIP), which is caused by inherited autosomal dominant mutations in the gene for hydroxymethylbilane synthase (HMBS), the third enzyme in the heme biosynthetic pathway. However, the measurement of HMBS enzymatic activity in the erythrocytes was within the normal range and Sanger sequencing of the HMBS gene failed to detect any pathogenic variants. To explore the molecular basis of the apparent AIP in this patient, we performed third-generation long-read single-molecule sequencing (nanopore sequencing) on a PCR product spanning the entire HMBS gene, including the intronic sequences. We identified a known pathogenic variant, c.77G>A, p.(Arg26His), in exon 3 at an allelic frequency of ~22% in the patient's blood. The absence of the pathogenic variant in the DNA of the parents and the results of additional confirmatory studies supported the presence of a de novo mosaic mutation. To our knowledge, such a mutation has not been previously described in any acute porphyria. Therefore, de novo mosaic mutations should be considered as potential causes of acute porphyrias when no pathogenic genetic variant can be identified through routine molecular diagnostics.

4.
Blood Adv ; 7(6): 878-892, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36129841

RESUMO

In the era of blood group genomics, reference collections of complete and fully resolved blood group gene alleles have gained high importance. For most blood groups, however, such collections are currently lacking, as resolving full-length gene sequences as haplotypes (ie, separated maternal/paternal origin) remains exceedingly difficult with both Sanger and short-read next-generation sequencing. Using the latest third-generation long-read sequencing, we generated a collection of fully resolved sequences for all 6 main ABO allele groups: ABO∗A1/A2/B/O.01.01/O.01.02/O.02. We selected 77 samples from an ABO genotype data set (n = 25 200) of serologically typed Swiss blood donors. The entire ABO gene was amplified in 2 overlapping long-range polymerase chain reactions (covering ∼23.6 kb) and sequenced by long-read Oxford Nanopore sequencing. For quality validation, 2 samples per ABO group were resequenced using Illumina and Pacific Biosciences technology. All 154 full-length ABO sequences were resolved as haplotypes. We observed novel, distinct sequence patterns for each ABO group. Most genetic diversity was found between, not within, ABO groups. Phylogenetic tree and haplotype network analyses highlighted distinct clades of each ABO group. Strikingly, our data uncovered 4 genetic variants putatively specific for ABO∗A1, for which direct diagnostic targets are currently lacking. We validated A1-diagnostic potential using whole-genome data (n = 4872) of a multiethnic cohort. Overall, our sequencing strategy proved powerful for producing high-quality ABO haplotypes and holds promise for generating similar collections for other blood groups. The publicly available collection of 154 haplotypes will serve as a valuable resource for molecular analyses of ABO, as well as studies about the function and evolutionary history of ABO.


Assuntos
Sistema ABO de Grupos Sanguíneos , Humanos , Alelos , Haplótipos , Sistema ABO de Grupos Sanguíneos/genética , Filogenia , Genótipo
5.
PLoS One ; 17(7): e0270897, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35877652

RESUMO

The unintentional movement of agronomic pests and pathogens is steadily increasing due to the intensification of global trade. Being able to identify accurately and rapidly early stages of an invasion is critical for developing successful eradication or management strategies. For most invasive organisms, molecular diagnostics is today the method of choice for species identification. However, the currently implemented tools are often developed for certain taxa and need to be adapted for new species, making them ill-suited to cope with the current constant increase in new invasive species. To alleviate this impediment, we developed a fast and accurate sequencing tool allowing to modularly obtain genetic information at different taxonomical levels. Using whole genome amplification (WGA) followed by Oxford nanopore MinION sequencing, our workflow does not require any a priori knowledge on the investigated species and its classification. While mainly focusing on harmful plant pathogenic insects, we also demonstrate the suitability of our workflow for the molecular identification of bacteria (Erwinia amylovora and Escherichia coli), fungi (Cladosporium herbarum, Colletotrichum salicis, Neofabraea alba) and nematodes (Globodera rostochiensis). On average, the pairwise identity between the generated consensus sequences and best GenBank BLAST matches was 99.6 ± 0.6%. Additionally, assessing the generated insect genomic dataset, the potential power of the workflow to detect pesticide resistance genes, as well as arthropod-infecting viruses and endosymbiotic bacteria is demonstrated.


Assuntos
Ascomicetos , Sequenciamento por Nanoporos , Nanoporos , Ascomicetos/genética , Bactérias/genética , Biosseguridade , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
6.
Nat Commun ; 13(1): 1063, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35217670

RESUMO

Soil-transmitted helminth infections represent a large burden with over a quarter of the world's population at risk. Low cure rates are observed with standard of care (albendazole); therefore, a more effective combination therapy (albendazole and ivermectin) is being investigated but showed variable treatment efficacies without evidence of intrinsic parasite resistance. Here, we analyzed the microbiome of Trichuris trichiura and hookworm-infected patients and found an association of different enterotypes with treatment efficacy. 80 T. trichiura-infected patients with hookworm co-infections from Pak-Khan, Laos, received either albendazole (n = 41) or albendazole and ivermectin combination therapy (n = 39). Pre-/post-treatment stool samples were collected to monitor treatment efficacy and microbial communities were profiled using 16S rRNA gene sequencing, qPCR, and shotgun sequencing. We identified three bacterial enterotypes and show that pre-treatment enterotype is associated with efficacy of the combination treatment for both T. trichiura (CRET1 = 5.8%; CRET2 = 16.6%; CRET3 = 68.8%) and hookworm (CRET1 = 31.3%; CRET2 = 16.6%; CRET3 = 78.6%). This study shows that pre-treatment enterotype enables predicting treatment outcome of combination therapy for T. trichiura and hookworm infections.Trial registration: ClinicalTrials.gov, NCT03527732. Registered 17 May 2018, https://clinicaltrials.gov/ct2/show/NCT03527732 .


Assuntos
Anti-Helmínticos , Helmintíase , Microbiota , Tricuríase , Albendazol/uso terapêutico , Anti-Helmínticos/uso terapêutico , Fezes/parasitologia , Helmintíase/tratamento farmacológico , Humanos , Ivermectina/uso terapêutico , Contagem de Ovos de Parasitas , RNA Ribossômico 16S/genética , Solo/parasitologia , Tricuríase/tratamento farmacológico
7.
Mol Ecol ; 29(21): 4203-4220, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32916006

RESUMO

Accurate and testable species hypotheses are essential for measuring, surveying and managing biodiversity. Taxonomists often rely on mitochondrial DNA barcoding to complement morphological species delimitations. Although COI-barcoding has largely proven successful in assisting identifications for most animal taxa, there are nevertheless numerous cases where mitochondrial barcodes do not reflect species hypotheses. For instance, what is regarded as a single species can be associated with two distinct DNA barcodes, which can point either to cryptic diversity or to within-species mitochondrial divergences without reproductive isolation. In contrast, two or more species can share barcodes, for instance due to mitochondrial introgression. These intrinsic limitations of DNA barcoding are commonly addressed with nuclear genomic markers, which are expensive, may have low repeatability and often require high-quality DNA. To overcome these limitations, we examined the use of ultraconserved elements (UCEs) as a quick and robust genomic approach to address such problematic cases of species delimitation in bees. This genomic method was assessed using six different species complexes suspected to harbour cryptic diversity, mitochondrial introgression or mitochondrial paraphyly. The sequencing of UCEs recovered between 686 and 1,860 homologous nuclear loci and provided explicit species delimitation in all investigated species complexes. These results provide strong evidence for the suitability of UCEs as a fast method for species delimitation even in recently diverged lineages. Furthermore, we provide the first evidence for both mitochondrial introgression among distinct bee species, and mitochondrial paraphyly within a single bee species.


Assuntos
DNA Mitocondrial , Mitocôndrias , Animais , Abelhas/genética , Biodiversidade , Núcleo Celular , Código de Barras de DNA Taxonômico , DNA Mitocondrial/genética , Genômica , Mitocôndrias/genética , Filogenia
8.
Mol Ecol Resour ; 19(4): 847-862, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30912868

RESUMO

Implementing cost-effective monitoring programs for wild bees remains challenging due to the high costs of sampling and specimen identification. To reduce costs, next-generation sequencing (NGS)-based methods have lately been suggested as alternatives to morphology-based identifications. To provide a comprehensive presentation of the advantages and weaknesses of different NGS-based identification methods, we assessed three of the most promising ones, namely metabarcoding, mitogenomics and NGS barcoding. Using a regular monitoring data set (723 specimens identified using morphology), we found that NGS barcoding performed best for both species presence/absence and abundance data, producing only few false positives (3.4%) and no false negatives. In contrast, the proportion of false positives and false negatives was higher using metabarcoding and mitogenomics. Although strong correlations were found between biomass and read numbers, abundance estimates significantly skewed the communities' composition in these two techniques. NGS barcoding recovered the same ecological patterns as morphology. Ecological conclusions based on metabarcoding and mitogenomics were similar to those based on morphology when using presence/absence data, but different when using abundance data. In terms of workload and cost, we show that metabarcoding and NGS barcoding can compete with morphology, but not mitogenomics which was consistently more expensive. Based on these results, we advocate that NGS barcoding is currently the seemliest NGS method for monitoring of wild bees. Furthermore, this method has the advantage of potentially linking DNA sequences with preserved voucher specimens, which enable morphological re-examination and will thus produce verifiable records which can be fed into faunistic databases.


Assuntos
Abelhas/classificação , Abelhas/genética , Código de Barras de DNA Taxonômico/métodos , DNA Mitocondrial/genética , Genética Populacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenômica/métodos , Animais , DNA Mitocondrial/química
9.
Geospat Health ; 13(2)2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30451481

RESUMO

Global trade of plant products represents one of the major driving forces for the spread of invasive insect pests. This visualization illustrates the problem of unintended dispersal of economically harmful fruit fly pests using geospatial maps based on interception data from the Swiss import control process. Furthermore, it reports the development of a molecular diagnostic assay for rapid identification of these pests at points of entry such as sea- and airports as a prevention measure. The assay reliably differentiates between target and non-target species within one hour and has been successfully evaluated for on-site use at a Swiss point of entry.


Assuntos
Comércio , Internacionalidade , Espécies Introduzidas , Análise Espaço-Temporal , Tephritidae , Animais , Técnicas de Amplificação de Ácido Nucleico , Suíça
10.
J Vis Exp ; (140)2018 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30417877

RESUMO

The whitefly Bemisia tabaci (Gennadius) is an invasive pest of considerable importance, affecting the production of vegetable and ornamental crops in many countries around the world. Severe yield losses are caused by direct feeding, and even more importantly, also by the transmission of more than 100 harmful plant pathogenic viruses. As for other invasive pests, increased international trade facilitates the dispersal of B. tabaci to areas beyond its native range. Inspections of plant import products at points of entry such as seaports and airports are, therefore, seen as an important prevention measure. However, this last line of defense against pest invasions is only effective if rapid identification methods for suspicious insect specimens are readily available. Because the morphological differentiation between the regulated B. tabaci and close relatives without quarantine status is difficult for non-taxonomists, a rapid molecular identification assay based on the loop-mediated isothermal amplification (LAMP) technology has been developed. This publication reports the detailed protocol of the novel assay describing rapid DNA extraction, set-up of the LAMP reaction, as well as interpretation of its read-out, which allows identifying B. tabaci specimens within one hour. Compared to existing protocols for the detection of specific B. tabaci biotypes, the developed method targets the whole B. tabaci species complex in one assay. Moreover the assay is designed to be applied on-site by plant health inspectors with minimal laboratory training directly at points of entry. Thorough validation performed under laboratory and on-site conditions demonstrates that the reported LAMP assay is a rapid and reliable identification tool, improving the management of B. tabaci.


Assuntos
Hemípteros/classificação , Hemípteros/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Animais , Laboratórios , Fatores de Tempo
11.
Mol Ecol ; 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30010208

RESUMO

The habitat template concept applied to a freshwater system indicates that lotic species, or those which occupy permanent habitats along stream courses, are less dispersive than lentic species, or those that occur in more ephemeral aquatic habitats. Thus, populations of lotic species will be more structured than those of lentic species. Stream courses include both flowing water and small, stagnant microhabitats that can provide refuge when streams are low. Many species occur in these microhabitats but remain poorly studied. Here, we present population genetic data for one such species, the tropical diving beetle Exocelina manokwariensis (Dytiscidae), sampled from six localities along a ~300 km transect across the Birds Head Peninsula of New Guinea. Molecular data from both mitochondrial (CO1 sequences) and nuclear (ddRAD loci) regions document fine-scale population structure across populations that are ~45 km apart. Our results are concordant with previous phylogenetic and macroecological studies that applied the habitat template concept to aquatic systems. This study also illustrates that these diverse but mostly overlooked microhabitats are promising study systems in freshwater ecology and evolutionary biology. With the advent of next-generation sequencing, fine-scale population genomic studies are feasible for small nonmodel organisms to help illuminate the effect of habitat stability on species' natural history, population structure and geographic distribution.

12.
Int J Parasitol Drugs Drug Resist ; 8(3): 372-378, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30007544

RESUMO

Soil-transmitted helminths infect 1.5 billion people worldwide. Treatment with anthelminthics is the key intervention but interactions between anthelminthic agents and the gut microbiota have not yet been studied. In this study, the effects of four anthelminthic drugs and combinations (tribendimidine, tribendimidine plus ivermectin, tribendimidine plus oxantel-pamoate, and albendazole plus oxantel-pamoate) on the gut microbiota were assessed. From each hookworm infected adolescent, one stool sample was collected prior to treatment, 24 h post-treatment and 3 weeks post-treatment, and a total of 144 stool samples were analyzed. The gut bacterial composition was analyzed using 16S rRNA gene sequencing. Tribendimidine given alone or together with oxantel-pamoate, and the combination of albendazole and oxantel pamoate were not associated with any major changes in the taxonomic composition of the gut microbiota in this population, at both the short-term post-treatment (24 h) and long-term post-treatment (3 weeks) periods. A high abundance of the bacterial phylum Bacteroidetes was observed following administration of tribendimidine plus ivermectin 24 h after treatment, due predominantly to difference in abundance of the families Prevotellaceae and Candidatus homeothermaceae. This effect is transient and disappears three weeks after treatment. Higher abundance of Bacteroidetes predicts an increase in metabolic pathways involved in the synthesis of B vitamins. This study highlights a strong relationship between tribendimidine and ivermectin administration and the gut microbiota and additional studies assessing the functional aspects as well as potential health-associated outcomes of these interactions are required.


Assuntos
Anti-Helmínticos/efeitos adversos , Bactérias/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Infecções por Uncinaria/tratamento farmacológico , Adolescente , Albendazol/efeitos adversos , Albendazol/uso terapêutico , Anti-Helmínticos/administração & dosagem , Anti-Helmínticos/uso terapêutico , Ascaríase/tratamento farmacológico , Ascaríase/epidemiologia , Ascaríase/parasitologia , Bactérias/genética , Bactérias/isolamento & purificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Biotina/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Quimioterapia Combinada/efeitos adversos , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Infecções por Uncinaria/epidemiologia , Humanos , Ivermectina/efeitos adversos , Ivermectina/uso terapêutico , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Contagem de Ovos de Parasitas , Fenilenodiaminas/efeitos adversos , Fenilenodiaminas/uso terapêutico , Pamoato de Pirantel/efeitos adversos , Pamoato de Pirantel/análogos & derivados , Pamoato de Pirantel/uso terapêutico , RNA Ribossômico 16S , Tricuríase/tratamento farmacológico , Tricuríase/epidemiologia , Tricuríase/parasitologia
13.
Parasit Vectors ; 11(1): 168, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29530088

RESUMO

BACKGROUND: Schistosomiasis is a neglected tropical disease burdening millions of people. One drug, praziquantel, is currently used for treatment and control. Clinically relevant drug resistance has not yet been described, but there is considerable heterogeneity in treatment outcomes, ranging from cure to only moderate egg reduction rates. The objectives of this study are to investigate potential worm-induced dysbacteriosis of the gut microbiota and to assess whether a specific microbiome profile could influence praziquantel response. METHODS: Using V3 and V4 regions of 16S rRNA genes, we screened the gut microbiota of 34 Schistosoma mansoni infected and uninfected children from Côte d'Ivoire. From each infected child one pre-treatment, one 24-hour and one 21-day follow-up sample after administering 60 mg/kg praziquantel or placebo, were collected. RESULTS: Overall taxonomic profiling and diversity indicators were found to be close to a "healthy" gut structure in all children. Slight overall compositional changes were observed between S. mansoni-infected and non-infected children. Praziquantel treatment was not linked to a major shift in the gut taxonomic profiles, thus reinforcing the good safety profile of the drug by ruling out off-targets effects on the gut microbes.16S rRNA gene of the Fusobacteriales order was significantly more abundant in cured individuals, both at baseline and 24 hours post-treatment. A real-time qPCR confirmed the over-abundance of Fusobacterium spp. in cured children. Fusobacterium spp. abundance could also be correlated with treatment induced S. mansoni egg-reduction. CONCLUSIONS: Our study suggests that neither a S. mansoni infection nor praziquantel administration triggers a significant effect on the microbial composition and that a higher abundance of Fusobacterium spp., before treatment, is associated with higher efficacy of praziquantel in the treatment of S. mansoni infections. TRIAL REGISTRATION: International Standard Randomised Controlled Trial, number ISRCTN15280205 .


Assuntos
Anti-Helmínticos/administração & dosagem , Microbioma Gastrointestinal/genética , Praziquantel/administração & dosagem , Schistosoma mansoni/efeitos dos fármacos , Adolescente , Animais , Anti-Helmínticos/uso terapêutico , Biodiversidade , Criança , Pré-Escolar , Côte d'Ivoire , Código de Barras de DNA Taxonômico , Fezes/parasitologia , Feminino , Fusobacterium/efeitos dos fármacos , Fusobacterium/genética , Fusobacterium/isolamento & purificação , Interações Hospedeiro-Parasita/efeitos dos fármacos , Humanos , Masculino , Praziquantel/uso terapêutico , RNA Ribossômico 16S/genética , Schistosoma mansoni/genética , Esquistossomose mansoni/tratamento farmacológico , Esquistossomose mansoni/epidemiologia , Resultado do Tratamento
14.
Pest Manag Sci ; 74(6): 1504-1512, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29363271

RESUMO

BACKGROUND: Rapid genetic on-site identification methods at points of entry, such as seaports and airports, have the potential to become important tools to prevent the introduction and spread of economically harmful pest species that are unintentionally transported by the global trade of plant commodities. This paper reports the development and evaluation of a loop-mediated isothermal amplification (LAMP)-based identification system to prevent introduction of the three most frequently encountered regulated quarantine insect species groups at Swiss borders, Bemisia tabaci, Thrips palmi and several regulated fruit flies of the genera Bactrocera and Zeugodacus. RESULTS: The LAMP primers were designed to target a fragment of the mitochondrial cytochrome c oxidase subunit I gene and were generated based on publicly available DNA sequences. Laboratory evaluations analysing 282 insect specimens suspected to be quarantine organisms revealed an overall test efficiency of 99%. Additional on-site evaluation at a point of entry using 37 specimens performed by plant health inspectors with minimal laboratory training resulted in an overall test efficiency of 95%. During both evaluation rounds, there were no false-positives and the observed false-negatives were attributable to human-induced manipulation errors. To overcome the possibility of accidental introduction of pests as a result of rare false-negative results, samples yielding negative results in the LAMP method were also subjected to DNA barcoding. CONCLUSION: Our LAMP assays reliably differentiated between the tested regulated and non-regulated insect species within <1 h. Hence, LAMP assays represent suitable tools for rapid on-site identification of harmful pests, which might facilitate an accelerated import control process for plant commodities. © 2018 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Hemípteros/classificação , Controle de Insetos/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Quarentena/métodos , Tephritidae/classificação , Tisanópteros/classificação , Animais , Complexo IV da Cadeia de Transporte de Elétrons/análise , Hemípteros/genética , Proteínas de Insetos/análise , Espécies Introduzidas , Suíça , Tephritidae/genética , Tisanópteros/genética
15.
Sci Rep ; 7(1): 16089, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29170522

RESUMO

Tropical mountains are usually characterized by a vertically-arranged sequence of ecological belts, which, in contrast to temperate habitats, have remained relatively stable in space across the Quaternary. Such long-lasting patterning of habitats makes them ideal to test the role of environmental pressure in driving ecological and evolutionary processes. Using Sumatran freshwater mayfly communities, we test whether elevation, rather than other spatial factors (i.e. volcanoes, watersheds) structures both species within communities and genes within species. Based on the analysis of 31 mayfly (Ephemeroptera) communities and restriction-site-associated-DNA sequencing in the four most ubiquitous species, we found elevation as the major spatial component structuring both species and genes in the landscape. In other words, similar elevations across different mountains or watersheds harbor more similar species and genes than different elevations within the same mountain or watershed. Tropical elevation gradients characterized by environmental conditions that are both steep and relatively stable seasonally and over geological time scales, are thus responsible for both ecological and genetic differentiation. Our results demonstrate how in situ ecological diversification at the micro-evolutionary level might fuel alpha- and beta- components of diversity in tropical sky islands.


Assuntos
Ecossistema , Animais , Ephemeroptera/classificação , Água Doce , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...